

Waste to Energy Solution In Rural and Urban Alaska

Problem

Waste Disposal in Remote Alaska Causes Many Concerns

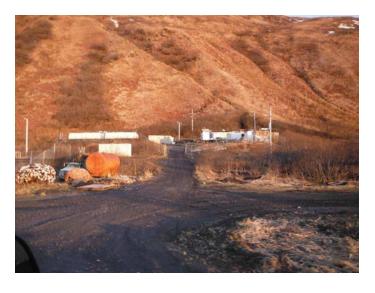
- Location
 - ➤ Generally far from town
 - ➤ Difficult to get to in adverse conditions
 - ➤ Closer to wildlife

Problem

Waste Disposal in Remote Alaska Causes Many Concerns

- Environmental
 - **≻**Air Pollutants
 - ➤ Water Pollutants
- ➤ Health & Safety
 - **≻**Exposure
 - ➤ Wildlife Interaction
- > Economic
 - ➤ Damage to Fisheries

Problem



Electricity & Fuel Rates are Very High

- ➤ Often \$0.30 + Cost of Fuel (an additional \$0.30-\$0.40) per kWh
- ➤ Household incomes below \$28,000 can spend 30-50% of their income on heating fuel (diesel) and electricity

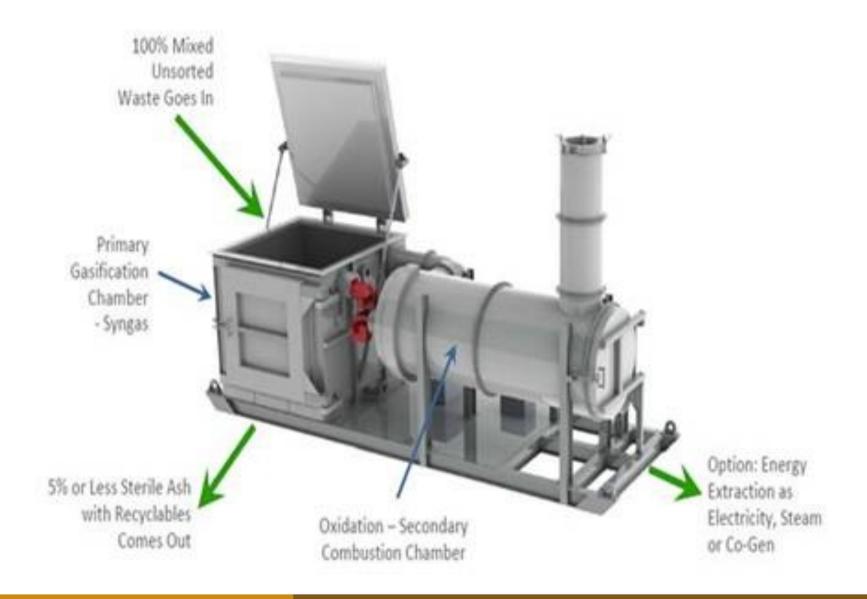
What If?...

An Affordable Solution Exists

- ➤ Waste to Energy Canada (WTEC) Mobile Gasification System (MGS)
 - ➤ Reduce landfill waste to near zero without harmful emissions or leachate
 - > Produce heat, chilled air or electricity
 - ➤ Potential to process sewage

What If?...

An Affordable Solution Exists



What If?...

An Affordable Solution Exists

Drastic Landfill Reduction

No Sorting or Pre-Processing

- ➤ Cuts capital/operating costs with minimal downtime
- >The small MGS processes 1.5 tons/day per module
- ≥2-4 person/hours/day

Drastic Landfill Reduction

Accepted Solid Waste Streams

- > Residential
- >Tires
- ➤ Commercial
- **≻**HazMat
- **≻**Biomass

- > Pharmaceutical
- **≻**Medical
- >Industrial
- **>**Used Oils
- ➤ Dewaterd Bio-sludge

Drastic Landfill Reduction

Accepted Liquid Waste Streams

- ➤ Used oil, oil sludge
- ➤Oil and latex paints
- ➤ Organic solvents
- >Anti-freeze

- >Transformer fluid
- ➤ Organic refrigerants
- ➤ Persistent Organic
- Pollutants (POPs) pesticides & herbicides

Result

What's Left

- >Sterile
- Non-toxic
- Virtually no carbon
- No slag or clinkers
- Land-filling not required
- Easily separated from glass and metals for recycling
- Passes EPA's "Toxicity Characteristics Leaching Procedure" (TCLP) test
- ➤ Bottom ash can be sold as aggregate for concrete or for asphalt road surfacing.

What's it cost?

- ➤ Each system is customized specifically for the client's waste stream, energy and wastewater needs and prices can and **WILL** vary
- ➤ However... Ballpark Estimate Only
 - ➤ Capital cost for a 1.5 ton/day unit \$1.5 \$2 million installed
 - ➤ Electric Production add-on for units 4 ton/day or higher start at ~ \$350,000
- ➤ Price includes engineering, set-up and training
- Shipping price not included due to high variability

Benefit

Value

- ➤ Heating and/or Electricity Value =
 - >\$100,000-\$200,000 per year (assuming 4 ton/day)
 - ➤ Could offset heating for school and tribal office
- ➤ Waste Solution eliminates landfill growth and adds the potential to mine current landfill
 - ➤ Pollution eliminates leachate and air pollution
 - ➤ Improves Health & Safety
 - ➤ Positive impact on wildlife streams and reduces negative human/wildlife interactions
 - ➤ Tourism aesthetic improvements in the community

Benefit

Value

- > Economic Return on Investment
 - >~ 10 years depending
- ➤ Social Return on Investment
 - >Immediate
- Environmental Return on Investment
 - >Immediate

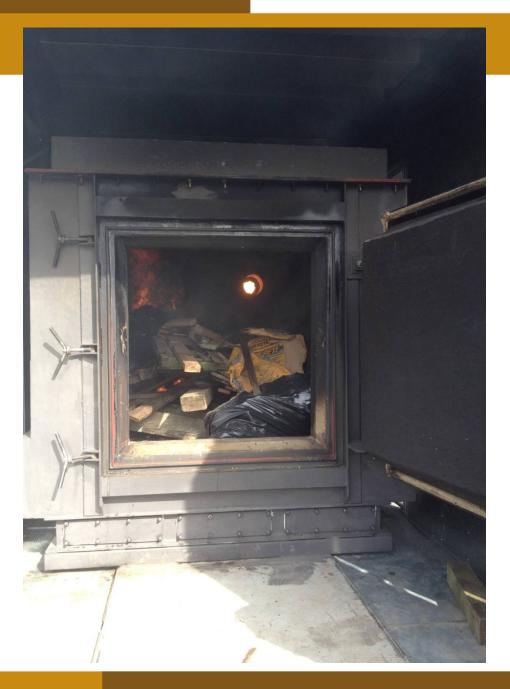
Real World Example

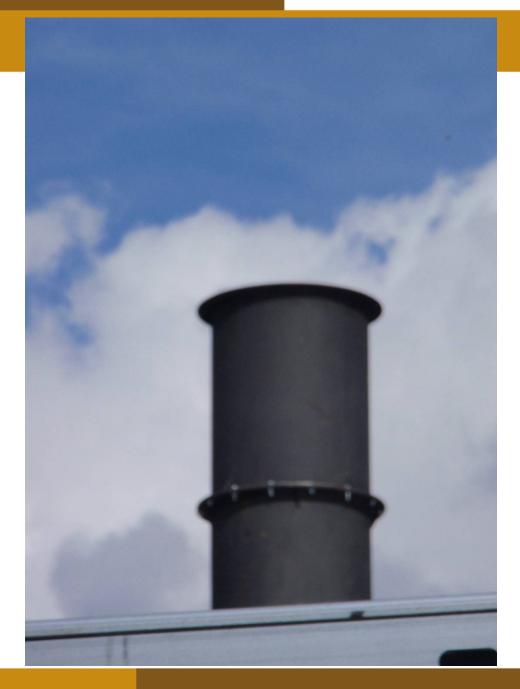
15

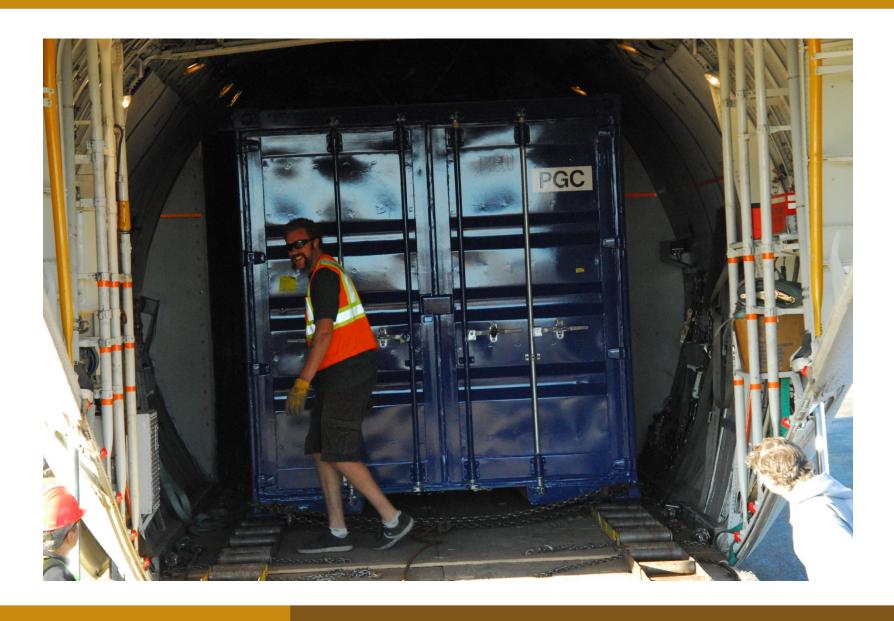
Real World Example

Old Crow, Yukon Territory, Canada

- ➤ Arctic Circle Community
- ➤ Pristine Wilderness, Porcupine River
- ➤ 1st Nation (Vuntut Gwitchin), Territorial
- & Government funded
- ➤ Clean up severe landfill problem (leachate, runoff, air pollution)







Contact Information

Andy Dickerson
Project Manager
Shearwater Systems
An Old Harbor Company
(513) 207-0700 cell